An alternative transcript of the S locus glycoprotein gene in a class II pollen-recessive self-incompatibility haplotype of Brassica oleracea encodes a membrane-anchored protein.

نویسندگان

  • T Tantikanjana
  • M E Nasrallah
  • J C Stein
  • C H Chen
  • J B Nasrallah
چکیده

Recent reports have shown that SLG, one of two genes linked to the S locus of Brassica, encodes a secreted glycoprotein. We have used RNA gel blot analysis, genomic and cDNA clone analysis, expression in transgenic plants, and immunodetection to characterize SLG2, the SLG gene derived from the S2 haplotype. This haplotype belongs to the class II group of S haplotypes that exhibit a weak incompatibility phenotype and are pollen recessive. We showed that SLG2 produces two transcript forms: the expected 1.6-kb transcript that predicts a secreted glycoprotein and an alternative 1.8-kb transcript that predicts a membrane-anchored protein. Stigmas of the S2 haplotype and pistils of transgenic tobacco plants transformed with the SLG2 gene produce a membrane-associated 62-kD protein as well as soluble 57- and 58-kD glycoforms. Because of the sequence similarity between SLG2 and the extracellular domain of the S Locus Receptor Kinase (SRK2) gene, the membrane-anchored form of SLG2 may be viewed as a naturally occurring truncated form of the receptor that lacks the kinase catalytic domain. The occurrence of this protein has potential implications for the activity of the full-length receptor. Furthermore, the underlying structure of the SLG2 gene suggests the evolution of SLG from an ancestral SRK-like gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S15 self-incompatibility haplotype in Brassica oleracea includes three S gene family members expressed in stigmas.

Self-incompatibility in Brassica is controlled by a single, highly polymorphic locus that extends over several hundred kilobases and includes several expressed genes. Two stigma proteins, the S locus receptor kinase (SRK) and the S locus glycoprotein (SLG), are encoded by genes located at the S locus and are thought to be involved in the recognition of self-pollen by the stigma. We report here ...

متن کامل

Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in brassica self-incompatibility.

In Brassica self-incompatibility, the recognition of self/nonself pollen grains, is controlled by the S-locus, which encodes three highly polymorphic proteins: S-locus receptor kinase (SRK), S-locus protein 11 (SP11; also designated S-locus Cys-rich protein), and S-locus glycoprotein (SLG). SP11, located in the pollen coat, determines pollen S-haplotype specificity, whereas SRK, located on the ...

متن کامل

The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level.

Self-incompatibility (SI) in Brassica is controlled sporophytically by the multiallelic S-locus. The SI phenotype of pollen in an S-heterozygote is determined by the relationship between the two S-haplotypes it carries, and dominant/recessive relationships often are observed between the two S-haplotypes. The S-locus protein 11 (SP11, also known as the S-locus cysteine-rich protein) gene has bee...

متن کامل

Expression of a self-incompatibility gene in a self-compatible line of Brassica oleracea.

In cruciferous plants, self-pollination is prevented by the action of genes situated at the self-incompatibility locus or S-locus. The self-incompatibility reaction is associated with expression of stigma glycoproteins encoded by the S-locus glycoprotein (SLG) gene. Only a few cases of self-compatible plants derived from self-incompatible lines in the crucifer Brassica have been reported. In th...

متن کامل

A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species.

Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. In the Brassicaceae, SI is genetically controlled by a single polymorphic locus, termed the S-locus. Pollen rejection occurs when stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 1993